Lecture 24

Baker Gill Solovay's Theorem

Baker Gill Solovay's Theorem

Baker Gill Solovay's Theorem

Theorem (BGS75): There exist oracles A and B such that $\mathrm{P}^{A}=\mathrm{NP}^{A}$ and $\mathrm{P}^{B} \neq \mathrm{NP}^{B}$.

Baker Gill Solovay's Theorem

Theorem (BGS75): There exist oracles A and B such that $\mathrm{P}^{A}=\mathrm{NP}^{A}$ and $\mathrm{P}^{B} \neq \mathrm{NP}^{B}$. Proof:

Baker Gill Solovay's Theorem

Theorem (BGS75): There exist oracles A and B such that $\mathrm{P}^{A}=\mathrm{NP}^{A}$ and $\mathrm{P}^{B} \neq \mathrm{NP}^{B}$.
Proof: We already know that $A=$ EXPCOM.

Baker Gill Solovay's Theorem

Theorem (BGS75): There exist oracles A and B such that $\mathrm{P}^{A}=\mathrm{NP}^{A}$ and $\mathrm{P}^{B} \neq \mathrm{NP}^{B}$.
Proof: We already know that $A=$ EXPCOM.
We want to find a B such that $\mathrm{P}^{B} \subset \mathrm{NP}^{B}$.

Baker Gill Solovay's Theorem

Theorem (BGS75): There exist oracles A and B such that $\mathrm{P}^{A}=\mathrm{NP}^{A}$ and $\mathrm{P}^{B} \neq \mathrm{NP}^{B}$.
Proof: We already know that $A=$ EXPCOM.
We want to find a B such that $\mathrm{P}^{B} \subset \mathrm{NP}^{B}$.
For any oracle (or language) B, define L_{B} as:

Baker Gill Solovay's Theorem

Theorem (BGS75): There exist oracles A and B such that $\mathrm{P}^{A}=\mathrm{NP}^{A}$ and $\mathrm{P}^{B} \neq \mathrm{NP}^{B}$.
Proof: We already know that $A=$ EXPCOM.
We want to find a B such that $\mathrm{P}^{B} \subset \mathrm{NP}^{B}$.
For any oracle (or language) B, define L_{B} as:

$$
L_{B}=\left\{1^{n} \mid B \text { has a string of length } n \text { in it }\right\}
$$

Baker Gill Solovay's Theorem

Theorem (BGS75): There exist oracles A and B such that $\mathrm{P}^{A}=\mathrm{NP}^{A}$ and $\mathrm{P}^{B} \neq \mathrm{NP}^{B}$.
Proof: We already know that $A=$ EXPCOM.
We want to find a B such that $\mathrm{P}^{B} \subset \mathrm{NP}^{B}$.
For any oracle (or language) B, define L_{B} as:

$$
L_{B}=\left\{1^{n} \mid B \text { has a string of length } n \text { in it }\right\}
$$

Claim:

Baker Gill Solovay's Theorem

Theorem (BGS75): There exist oracles A and B such that $\mathrm{P}^{A}=\mathrm{NP}^{A}$ and $\mathrm{P}^{B} \neq \mathrm{NP}^{B}$. Proof: We already know that $A=$ EXPCOM.

We want to find a B such that $\mathrm{P}^{B} \subset \mathrm{NP}^{B}$.
For any oracle (or language) B, define L_{B} as:

$$
L_{B}=\left\{1^{n} \mid B \text { has a string of length } n \text { in it }\right\}
$$

Claim: $L_{B} \in \mathrm{NP}^{B}$ for any B.

Baker Gill Solovay's Theorem

Theorem (BGS75): There exist oracles A and B such that $\mathrm{P}^{A}=\mathrm{NP}^{A}$ and $\mathrm{P}^{B} \neq \mathrm{NP}^{B}$. Proof: We already know that $A=$ EXPCOM.

We want to find a B such that $\mathrm{P}^{B} \subset \mathrm{NP}^{B}$.
For any oracle (or language) B, define L_{B} as:

$$
L_{B}=\left\{1^{n} \mid B \text { has a string of length } n \text { in it }\right\}
$$

Claim: $L_{B} \in \mathrm{NP}^{B}$ for any B.
Proof:

Baker Gill Solovay's Theorem

Theorem (BGS75): There exist oracles A and B such that $\mathrm{P}^{A}=\mathrm{NP}^{A}$ and $\mathrm{P}^{B} \neq \mathrm{NP}^{B}$. Proof: We already know that $A=$ EXPCOM.

We want to find a B such that $\mathrm{P}^{B} \subset \mathrm{NP}^{B}$.
For any oracle (or language) B, define L_{B} as:

$$
L_{B}=\left\{1^{n} \mid B \text { has a string of length } n \text { in it }\right\}
$$

Claim: $L_{B} \in \mathrm{NP}^{B}$ for any B.
Proof: Oracle NP machine on input 1^{n}

Baker Gill Solovay's Theorem

Theorem (BGS75): There exist oracles A and B such that $\mathrm{P}^{A}=\mathrm{NP}^{A}$ and $\mathrm{P}^{B} \neq \mathrm{NP}^{B}$. Proof: We already know that $A=$ EXPCOM.

We want to find a B such that $\mathrm{P}^{B} \subset \mathrm{NP}^{B}$.
For any oracle (or language) B, define L_{B} as:

$$
L_{B}=\left\{1^{n} \mid B \text { has a string of length } n \text { in it }\right\}
$$

Claim: $L_{B} \in \mathrm{NP}^{B}$ for any B.
Proof: Oracle NP machine on input 1^{n} will guess all strings of length n

Baker Gill Solovay's Theorem

Theorem (BGS75): There exist oracles A and B such that $\mathrm{P}^{A}=\mathrm{NP}^{A}$ and $\mathrm{P}^{B} \neq \mathrm{NP}^{B}$.
Proof: We already know that $A=$ EXPCOM.
We want to find a B such that $\mathrm{P}^{B} \subset \mathrm{NP}^{B}$.
For any oracle (or language) B, define L_{B} as:

$$
L_{B}=\left\{1^{n} \mid B \text { has a string of length } n \text { in it }\right\}
$$

Claim: $L_{B} \in \mathrm{NP}^{B}$ for any B.
Proof: Oracle NP machine on input 1^{n} will guess all strings of length n and ask

Baker Gill Solovay's Theorem

Theorem (BGS75): There exist oracles A and B such that $\mathrm{P}^{A}=\mathrm{NP}^{A}$ and $\mathrm{P}^{B} \neq \mathrm{NP}^{B}$.
Proof: We already know that $A=$ EXPCOM.
We want to find a B such that $\mathrm{P}^{B} \subset \mathrm{NP}^{B}$.
For any oracle (or language) B, define L_{B} as:

$$
L_{B}=\left\{1^{n} \mid B \text { has a string of length } n \text { in it }\right\}
$$

Claim: $L_{B} \in \mathrm{NP}^{B}$ for any B.
Proof: Oracle NP machine on input 1^{n} will guess all strings of length n and ask oracle whether generated string belongs to B

Baker Gill Solovay's Theorem

Theorem (BGS75): There exist oracles A and B such that $\mathrm{P}^{A}=\mathrm{NP}^{A}$ and $\mathrm{P}^{B} \neq \mathrm{NP}^{B}$.
Proof: We already know that $A=$ EXPCOM.
We want to find a B such that $\mathrm{P}^{B} \subset \mathrm{NP}^{B}$.
For any oracle (or language) B, define L_{B} as:

$$
L_{B}=\left\{1^{n} \mid B \text { has a string of length } n \text { in it }\right\}
$$

Claim: $L_{B} \in \mathrm{NP}^{B}$ for any B.
Proof: Oracle NP machine on input 1^{n} will guess all strings of length n and ask oracle whether generated string belongs to B and answer accordingly.

Baker Gill Solovay's Theorem

Theorem (BGS75): There exist oracles A and B such that $\mathrm{P}^{A}=\mathrm{NP}^{A}$ and $\mathrm{P}^{B} \neq \mathrm{NP}^{B}$.
Proof: We already know that $A=$ EXPCOM.
We want to find a B such that $\mathrm{P}^{B} \subset \mathrm{NP}^{B}$.
For any oracle (or language) B, define L_{B} as:

$$
L_{B}=\left\{1^{n} \mid B \text { has a string of length } n \text { in it }\right\}
$$

Claim: $L_{B} \in \mathrm{NP}^{B}$ for any B.
Proof: Oracle NP machine on input 1^{n} will guess all strings of length n and ask oracle whether generated string belongs to B and answer accordingly.

We now want to construct a B so that L_{B} cannot be decided

Baker Gill Solovay's Theorem

Theorem (BGS75): There exist oracles A and B such that $\mathrm{P}^{A}=\mathrm{NP}^{A}$ and $\mathrm{P}^{B} \neq \mathrm{NP}^{B}$. Proof: We already know that $A=$ EXPCOM.

We want to find a B such that $\mathrm{P}^{B} \subset \mathrm{NP}^{B}$.
For any oracle (or language) B, define L_{B} as:

$$
L_{B}=\left\{1^{n} \mid B \text { has a string of length } n \text { in it }\right\}
$$

Claim: $L_{B} \in \mathrm{NP}^{B}$ for any B.
Proof: Oracle NP machine on input 1^{n} will guess all strings of length n and ask oracle whether generated string belongs to B and answer accordingly.

We now want to construct a B so that L_{B} cannot be decided by any polytime

Baker Gill Solovay's Theorem

Theorem (BGS75): There exist oracles A and B such that $\mathrm{P}^{A}=\mathrm{NP}^{A}$ and $\mathrm{P}^{B} \neq \mathrm{NP}^{B}$. Proof: We already know that $A=$ EXPCOM.

We want to find a B such that $\mathrm{P}^{B} \subset \mathrm{NP}^{B}$.
For any oracle (or language) B, define L_{B} as:

$$
L_{B}=\left\{1^{n} \mid B \text { has a string of length } n \text { in it }\right\}
$$

Claim: $L_{B} \in \mathrm{NP}^{B}$ for any B.
Proof: Oracle NP machine on input 1^{n} will guess all strings of length n and ask oracle whether generated string belongs to B and answer accordingly.

We now want to construct a B so that L_{B} cannot be decided by any polytime oracle DTM with access to B.

Baker Gill Solovay's Theorem

Theorem (BGS75): There exist oracles A and B such that $\mathrm{P}^{A}=\mathrm{NP}^{A}$ and $\mathrm{P}^{B} \neq \mathrm{NP}^{B}$. Proof: We already know that $A=$ EXPCOM.

We want to find a B such that $\mathrm{P}^{B} \subset \mathrm{NP}^{B}$.
For any oracle (or language) B, define L_{B} as:

$$
L_{B}=\left\{1^{n} \mid B \text { has a string of length } n \text { in it }\right\}
$$

Claim: $L_{B} \in \mathrm{NP}^{B}$ for any B.
Proof: Oracle NP machine on input 1^{n} will guess all strings of length n and ask oracle whether generated string belongs to B and answer accordingly.

We now want to construct a B so that L_{B} cannot be decided by any polytime oracle DTM with access to B.

Baker Gill Solovay's Theorem

Baker Gill Solovay's Theorem

Warmup Claim:

Baker Gill Solovay's Theorem

Warmup Claim: For any polytime, oracle DTM M, there exists a language B

Baker Gill Solovay's Theorem

Warmup Claim: For any polytime, oracle DTM M, there exists a language B such that M^{B} does not decide L_{B}.

Baker Gill Solovay's Theorem

Warmup Claim: For any polytime, oracle DTM M, there exists a language B such that M^{B} does not decide L_{B}.

Proof:

Baker Gill Solovay's Theorem

Warmup Claim: For any polytime, oracle DTM M, there exists a language B such that M^{B} does not decide L_{B}.
Proof: Let $p(n)$ be M 's runtime.

Baker Gill Solovay's Theorem

Warmup Claim: For any polytime, oracle DTM M, there exists a language B such that M^{B} does not decide L_{B}.
Proof: Let $p(n)$ be M 's runtime. Let n be an integer such that $2^{n}>p(n)$.

Baker Gill Solovay's Theorem

Warmup Claim: For any polytime, oracle DTM M, there exists a language B such that M^{B} does not decide L_{B}.
Proof: Let $p(n)$ be M 's runtime. Let n be an integer such that $2^{n}>p(n)$.
Idea: Exploit the fact that on input $1^{n}, M$ cannot query on all strings of length n.

Baker Gill Solovay's Theorem

Warmup Claim: For any polytime, oracle DTM M, there exists a language B such that M^{B} does not decide L_{B}.
Proof: Let $p(n)$ be M 's runtime. Let n be an integer such that $2^{n}>p(n)$.
Idea: Exploit the fact that on input $1^{n}, M$ cannot query on all strings of length n.
We define B in the following way:

Baker Gill Solovay's Theorem

Warmup Claim: For any polytime, oracle DTM M, there exists a language B such that M^{B} does not decide L_{B}.
Proof: Let $p(n)$ be M 's runtime. Let n be an integer such that $2^{n}>p(n)$.
Idea: Exploit the fact that on input $1^{n}, M$ cannot query on all strings of length n.
We define B in the following way:

- Run $M\left(1^{n}\right)$ and answer "no" to all the queries.

Baker Gill Solovay's Theorem

Warmup Claim: For any polytime, oracle DTM M, there exists a language B such that M^{B} does not decide L_{B}.
Proof: Let $p(n)$ be M 's runtime. Let n be an integer such that $2^{n}>p(n)$.
Idea: Exploit the fact that on input $1^{n}, M$ cannot query on all strings of length n.
We define B in the following way:

- Run $M\left(1^{n}\right)$ and answer "no" to all the queries.
- Let b be the output of M

Baker Gill Solovay's Theorem

Warmup Claim: For any polytime, oracle DTM M, there exists a language B such that M^{B} does not decide L_{B}.
Proof: Let $p(n)$ be M 's runtime. Let n be an integer such that $2^{n}>p(n)$.
Idea: Exploit the fact that on input $1^{n}, M$ cannot query on all strings of length n.
We define B in the following way:

- Run $M\left(1^{n}\right)$ and answer "no" to all the queries.
- Let b be the output of M and $Q=\left\{q_{1}, q_{2}, \ldots,\right\}$ be the set of queries of length n.

Baker Gill Solovay's Theorem

Warmup Claim: For any polytime, oracle DTM M, there exists a language B such that M^{B} does not decide L_{B}.
Proof: Let $p(n)$ be M 's runtime. Let n be an integer such that $2^{n}>p(n)$.
Idea: Exploit the fact that on input $1^{n}, M$ cannot query on all strings of length n.
We define B in the following way:

- Run $M\left(1^{n}\right)$ and answer "no" to all the queries.
- Let b be the output of M and $Q=\left\{q_{1}, q_{2}, \ldots,\right\}$ be the set of queries of length n.
- Take any $x \in\{0,1\}^{n} \backslash Q$.

Baker Gill Solovay's Theorem

Warmup Claim: For any polytime, oracle DTM M, there exists a language B such that M^{B} does not decide L_{B}.
Proof: Let $p(n)$ be M 's runtime. Let n be an integer such that $2^{n}>p(n)$.
Idea: Exploit the fact that on input $1^{n}, M$ cannot query on all strings of length n.
We define B in the following way:

- Run $M\left(1^{n}\right)$ and answer "no" to all the queries.
- Let b be the output of M and $Q=\left\{q_{1}, q_{2}, \ldots,\right\}$ be the set of queries of length n.
- Take any $x \in\{0,1\}^{n} \backslash Q$. (such an x exists because $2^{n}>p(n)$)

Baker Gill Solovay's Theorem

Warmup Claim: For any polytime, oracle DTM M, there exists a language B such that M^{B} does not decide L_{B}.
Proof: Let $p(n)$ be M 's runtime. Let n be an integer such that $2^{n}>p(n)$.
Idea: Exploit the fact that on input $1^{n}, M$ cannot query on all strings of length n.
We define B in the following way:

- Run $M\left(1^{n}\right)$ and answer "no" to all the queries.
- Let b be the output of M and $Q=\left\{q_{1}, q_{2}, \ldots,\right\}$ be the set of queries of length n.
- Take any $x \in\{0,1\}^{n} \backslash Q$. (such an x exists because $2^{n}>p(n)$)
- If $b=0$, then put x in B

Baker Gill Solovay's Theorem

Warmup Claim: For any polytime, oracle DTM M, there exists a language B such that M^{B} does not decide L_{B}.
Proof: Let $p(n)$ be M 's runtime. Let n be an integer such that $2^{n}>p(n)$.
Idea: Exploit the fact that on input $1^{n}, M$ cannot query on all strings of length n.
We define B in the following way:

- Run $M\left(1^{n}\right)$ and answer "no" to all the queries.
- Let b be the output of M and $Q=\left\{q_{1}, q_{2}, \ldots,\right\}$ be the set of queries of length n.
- Take any $x \in\{0,1\}^{n} \backslash Q$. (such an x exists because $2^{n}>p(n)$)
- If $b=0$, then put x in B, else, keep B empty.

Baker Gill Solovay's Theorem

Warmup Claim: For any polytime, oracle DTM M, there exists a language B such that M^{B} does not decide L_{B}.
Proof: Let $p(n)$ be M 's runtime. Let n be an integer such that $2^{n}>p(n)$.
Idea: Exploit the fact that on input $1^{n}, M$ cannot query on all strings of length n.
We define B in the following way:

- Run $M\left(1^{n}\right)$ and answer "no" to all the queries.
- Let b be the output of M and $Q=\left\{q_{1}, q_{2}, \ldots,\right\}$ be the set of queries of length n.
- Take any $x \in\{0,1\}^{n} \backslash Q$. (such an x exists because $2^{n}>p(n)$)
- If $b=0$, then put x in B, else, keep B empty.

Now, $M^{B}\left(1^{n}\right)$ will be wrong by construction of B.

Baker Gill Solovay's Theorem

Warmup Claim: For any polytime, oracle DTM M, there exists a language B such that M^{B} does not decide L_{B}.
Proof: Let $p(n)$ be M 's runtime. Let n be an integer such that $2^{n}>p(n)$.
Idea: Exploit the fact that on input $1^{n}, M$ cannot query on all strings of length n.
We define B in the following way:

- Run $M\left(1^{n}\right)$ and answer "no" to all the queries.
- Let b be the output of M and $Q=\left\{q_{1}, q_{2}, \ldots,\right\}$ be the set of queries of length n.
- Take any $x \in\{0,1\}^{n} \backslash Q$. (such an x exists because $\left.2^{n}>p(n)\right)$
- If $b=0$, then put x in B, else, keep B empty.

Now, $M^{B}\left(1^{n}\right)$ will be wrong by construction of B.

Baker Gill Solovay's Theorem

Baker Gill Solovay's Theorem

Let's design a B so that

Baker Gill Solovay's Theorem

Let's design a B so that no polytime oracle DTM with access to B can decide L_{B}.

Baker Gill Solovay's Theorem

Let's design a B so that no polytime oracle DTM with access to B can decide L_{B}.
Consider a sequence of M_{1}, M_{2}, \ldots of oracle DTMs with runtime $p_{1}(n), p_{2}(n), \ldots$

Baker Gill Solovay's Theorem

Let's design a B so that no polytime oracle DTM with access to B can decide L_{B}. Consider a sequence of M_{1}, M_{2}, \ldots of oracle DTMs with runtime $p_{1}(n), p_{2}(n), \ldots$ We will build B inductively.

Baker Gill Solovay's Theorem

Let's design a B so that no polytime oracle DTM with access to B can decide L_{B}. Consider a sequence of M_{1}, M_{2}, \ldots of oracle DTMs with runtime $p_{1}(n), p_{2}(n), \ldots$ We will build B inductively. Let $B_{0}=\varnothing, n_{0}=1, p_{0}=c$.

Baker Gill Solovay's Theorem

Let's design a B so that no polytime oracle DTM with access to B can decide L_{B}. Consider a sequence of M_{1}, M_{2}, \ldots of oracle DTMs with runtime $p_{1}(n), p_{2}(n), \ldots$ We will build B inductively. Let $B_{0}=\varnothing, n_{0}=1, p_{0}=c$. In the i th iteration:

Baker Gill Solovay's Theorem

Let's design a B so that no polytime oracle DTM with access to B can decide L_{B}. Consider a sequence of M_{1}, M_{2}, \ldots of oracle DTMs with runtime $p_{1}(n), p_{2}(n), \ldots$ We will build B inductively. Let $B_{0}=\varnothing, n_{0}=1, p_{0}=c$.

In the i th iteration:

- Let n_{i} be the smallest integer s.t. $2^{n_{i}}>p_{i}\left(n_{i}\right)$ and $n_{i}>p_{j}\left(n_{j}\right)$ for all $1 \leq j<i$.

Baker Gill Solovay's Theorem

Let's design a B so that no polytime oracle DTM with access to B can decide L_{B}. Consider a sequence of M_{1}, M_{2}, \ldots of oracle DTMs with runtime $p_{1}(n), p_{2}(n), \ldots$ We will build B inductively. Let $B_{0}=\varnothing, n_{0}=1, p_{0}=c$.
In the i th iteration:

- Let n_{i} be the smallest integer s.t. $2^{n_{i}}>p_{i}\left(n_{i}\right)$ and $n_{i}>p_{j}\left(n_{j}\right)$ for all $1 \leq j<i$.
- We define B_{i} in the following way:

Baker Gill Solovay's Theorem

Let's design a B so that no polytime oracle DTM with access to B can decide L_{B}.
Consider a sequence of M_{1}, M_{2}, \ldots of oracle DTMs with runtime $p_{1}(n), p_{2}(n), \ldots$
We will build B inductively. Let $B_{0}=\varnothing, n_{0}=1, p_{0}=c$.
In the i th iteration:

- Let n_{i} be the smallest integer s.t. $2^{n_{i}}>p_{i}\left(n_{i}\right)$ and $n_{i}>p_{j}\left(n_{j}\right)$ for all $1 \leq j<i$.
- We define B_{i} in the following way:
- Run $M_{i}\left(1^{n_{i}}\right)$ and respond to its queries according to B_{i-1}.

Baker Gill Solovay's Theorem

Let's design a B so that no polytime oracle DTM with access to B can decide L_{B}.
Consider a sequence of M_{1}, M_{2}, \ldots of oracle DTMs with runtime $p_{1}(n), p_{2}(n), \ldots$
We will build B inductively. Let $B_{0}=\varnothing, n_{0}=1, p_{0}=c$.
In the i th iteration:

- Let n_{i} be the smallest integer s.t. $2^{n_{i}}>p_{i}\left(n_{i}\right)$ and $n_{i}>p_{j}\left(n_{j}\right)$ for all $1 \leq j<i$.
- We define B_{i} in the following way:
- Run $M_{i}\left(1^{n_{i}}\right)$ and respond to its queries according to B_{i-1}.
- Let b be the output of M_{i}

Baker Gill Solovay's Theorem

Let's design a B so that no polytime oracle DTM with access to B can decide L_{B}.
Consider a sequence of M_{1}, M_{2}, \ldots of oracle DTMs with runtime $p_{1}(n), p_{2}(n), \ldots$
We will build B inductively. Let $B_{0}=\varnothing, n_{0}=1, p_{0}=c$.
In the i th iteration:

- Let n_{i} be the smallest integer s.t. $2^{n_{i}}>p_{i}\left(n_{i}\right)$ and $n_{i}>p_{j}\left(n_{j}\right)$ for all $1 \leq j<i$.
- We define B_{i} in the following way:
- Run $M_{i}\left(1^{n_{i}}\right)$ and respond to its queries according to B_{i-1}.
- Let b be the output of M_{i} and $Q=\left\{q_{1}, q_{2}, \ldots,\right\}$ be the set of queries of length n_{i}.

Baker Gill Solovay's Theorem

Let's design a B so that no polytime oracle DTM with access to B can decide L_{B}.
Consider a sequence of M_{1}, M_{2}, \ldots of oracle DTMs with runtime $p_{1}(n), p_{2}(n), \ldots$
We will build B inductively. Let $B_{0}=\varnothing, n_{0}=1, p_{0}=c$.
In the i th iteration:

- Let n_{i} be the smallest integer s.t. $2^{n_{i}}>p_{i}\left(n_{i}\right)$ and $n_{i}>p_{j}\left(n_{j}\right)$ for all $1 \leq j<i$.
- We define B_{i} in the following way:
- Run $M_{i}\left(1^{n_{i}}\right)$ and respond to its queries according to B_{i-1}.
- Let b be the output of M_{i} and $Q=\left\{q_{1}, q_{2}, \ldots,\right\}$ be the set of queries of length n_{i}.
- Take any $x \in\{0,1\}^{n_{i}} \backslash Q$.

Baker Gill Solovay's Theorem

Let's design a B so that no polytime oracle DTM with access to B can decide L_{B}.
Consider a sequence of M_{1}, M_{2}, \ldots of oracle DTMs with runtime $p_{1}(n), p_{2}(n), \ldots$
We will build B inductively. Let $B_{0}=\varnothing, n_{0}=1, p_{0}=c$.
In the i th iteration:

- Let n_{i} be the smallest integer s.t. $2^{n_{i}}>p_{i}\left(n_{i}\right)$ and $n_{i}>p_{j}\left(n_{j}\right)$ for all $1 \leq j<i$.
- We define B_{i} in the following way:
- Run $M_{i}\left(1^{n_{i}}\right)$ and respond to its queries according to B_{i-1}.
- Let b be the output of M_{i} and $Q=\left\{q_{1}, q_{2}, \ldots,\right\}$ be the set of queries of length n_{i}.
- Take any $x \in\{0,1\}^{n_{i}} \backslash Q$. (such an x exists because $2^{n_{i}}>p\left(n_{i}\right)$)

Baker Gill Solovay's Theorem

Let's design a B so that no polytime oracle DTM with access to B can decide L_{B}.
Consider a sequence of M_{1}, M_{2}, \ldots of oracle DTMs with runtime $p_{1}(n), p_{2}(n), \ldots$
We will build B inductively. Let $B_{0}=\varnothing, n_{0}=1, p_{0}=c$.
In the i th iteration:

- Let n_{i} be the smallest integer s.t. $2^{n_{i}}>p_{i}\left(n_{i}\right)$ and $n_{i}>p_{j}\left(n_{j}\right)$ for all $1 \leq j<i$.
- We define B_{i} in the following way:
- Run $M_{i}\left(1^{n_{i}}\right)$ and respond to its queries according to B_{i-1}.
- Let b be the output of M_{i} and $Q=\left\{q_{1}, q_{2}, \ldots,\right\}$ be the set of queries of length n_{i}.
- Take any $x \in\{0,1\}^{n_{i}} \backslash Q$. (such an x exists because $2^{n_{i}}>p\left(n_{i}\right)$)
- If $b=0$, then set $B_{i}=B_{i-1} \cup x$

Baker Gill Solovay's Theorem

Let's design a B so that no polytime oracle DTM with access to B can decide L_{B}.
Consider a sequence of M_{1}, M_{2}, \ldots of oracle DTMs with runtime $p_{1}(n), p_{2}(n), \ldots$
We will build B inductively. Let $B_{0}=\varnothing, n_{0}=1, p_{0}=c$.
In the i th iteration:

- Let n_{i} be the smallest integer s.t. $2^{n_{i}}>p_{i}\left(n_{i}\right)$ and $n_{i}>p_{j}\left(n_{j}\right)$ for all $1 \leq j<i$.
- We define B_{i} in the following way:
- Run $M_{i}\left(1^{n_{i}}\right)$ and respond to its queries according to B_{i-1}.
- Let b be the output of M_{i} and $Q=\left\{q_{1}, q_{2}, \ldots,\right\}$ be the set of queries of length n_{i}.
- Take any $x \in\{0,1\}^{n_{i}} \backslash Q$. (such an x exists because $2^{n_{i}}>p\left(n_{i}\right)$)
- If $b=0$, then set $B_{i}=B_{i-1} \cup x$, else, set $B_{i}=B_{i-1}$.

Baker Gill Solovay's Theorem

Let's design a B so that no polytime oracle DTM with access to B can decide L_{B}.
Consider a sequence of M_{1}, M_{2}, \ldots of oracle DTMs with runtime $p_{1}(n), p_{2}(n), \ldots$
We will build B inductively. Let $B_{0}=\varnothing, n_{0}=1, p_{0}=c$.
In the i th iteration:

- Let n_{i} be the smallest integer s.t. $2^{n_{i}}>p_{i}\left(n_{i}\right)$ and $n_{i}>p_{j}\left(n_{j}\right)$ for all $1 \leq j<i$.
- We define B_{i} in the following way:
- Run $M_{i}\left(1^{n_{i}}\right)$ and respond to its queries according to B_{i-1}.
- Let b be the output of M_{i} and $Q=\left\{q_{1}, q_{2}, \ldots,\right\}$ be the set of queries of length n_{i}.
- Take any $x \in\{0,1\}^{n_{i}} \backslash Q$. (such an x exists because $2^{n_{i}}>p\left(n_{i}\right)$)
- If $b=0$, then set $B_{i}=B_{i-1} \cup x$, else, set $B_{i}=B_{i-1}$.

Baker Gill Solovay's Theorem

Baker Gill Solovay's Theorem

We claim that L_{B}, where $B=\cup_{i} B_{i}$

Baker Gill Solovay's Theorem

We claim that L_{B}, where $B=\cup_{i} B_{i}$, can not be decided by any polytime oracle TM with

Baker Gill Solovay's Theorem

We claim that L_{B}, where $B=\cup_{i} B_{i}$, can not be decided by any polytime oracle TM with access to B.

Baker Gill Solovay's Theorem

We claim that L_{B}, where $B=\cup_{i} B_{i}$, can not be decided by any polytime oracle TM with access to B.

Suppose \exists a polytime TM M_{i} with access to B that can decide L_{B}.

Baker Gill Solovay's Theorem

We claim that L_{B}, where $B=\cup_{i} B_{i}$, can not be decided by any polytime oracle TM with access to B.

Suppose \exists a polytime TM M_{i} with access to B that can decide L_{B}.
What will be the output of $M_{i}\left(1^{n_{i}}\right)$ when M_{i} has access to B_{i} ?

Baker Gill Solovay's Theorem

We claim that L_{B}, where $B=\cup_{i} B_{i}$, can not be decided by any polytime oracle TM with access to B.

Suppose \exists a polytime TM M_{i} with access to B that can decide L_{B}.
What will be the output of $M_{i}\left(1^{n_{i}}\right)$ when M_{i} has access to B_{i} ?
Observation: M_{i} on $1^{n_{i}}$ with access to B_{i}

Baker Gill Solovay's Theorem

We claim that L_{B}, where $B=\cup_{i} B_{i}$, can not be decided by any polytime oracle TM with access to B.

Suppose \exists a polytime TM M_{i} with access to B that can decide L_{B}.
What will be the output of $M_{i}\left(1^{n_{i}}\right)$ when M_{i} has access to B_{i} ?
Observation: M_{i} on $1^{n_{i}}$ with access to B_{i} runs the same as

Baker Gill Solovay's Theorem

We claim that L_{B}, where $B=\cup_{i} B_{i}$, can not be decided by any polytime oracle TM with access to B.

Suppose \exists a polytime TM M_{i} with access to B that can decide L_{B}.
What will be the output of $M_{i}\left(1^{n_{i}}\right)$ when M_{i} has access to B_{i} ?
Observation: M_{i} on $1^{n_{i}}$ with access to B_{i} runs the same as M_{i} on $1^{n_{i}}$ with access to B_{i-1}

Baker Gill Solovay's Theorem

We claim that L_{B}, where $B=\cup_{i} B_{i}$, can not be decided by any polytime oracle TM with access to B.

Suppose \exists a polytime TM M_{i} with access to B that can decide L_{B}.
What will be the output of $M_{i}\left(1^{n_{i}}\right)$ when M_{i} has access to B_{i} ?
Observation: M_{i} on $1^{n_{i}}$ with access to B_{i} runs the same as M_{i} on $1^{n_{i}}$ with access to B_{i-1} as M_{i} cannot query on x by construction.

Baker Gill Solovay's Theorem

We claim that L_{B}, where $B=\cup_{i} B_{i}$, can not be decided by any polytime oracle TM with access to B.

Suppose \exists a polytime TM M_{i} with access to B that can decide L_{B}.
What will be the output of $M_{i}\left(1^{n_{i}}\right)$ when M_{i} has access to B_{i} ?
Observation: M_{i} on $1^{n_{i}}$ with access to B_{i} runs the same as M_{i} on $1^{n_{i}}$ with access to B_{i-1} as M_{i} cannot query on x by construction. Now,

Baker Gill Solovay's Theorem

We claim that L_{B}, where $B=\cup_{i} B_{i}$, can not be decided by any polytime oracle TM with access to B.

Suppose \exists a polytime TM M_{i} with access to B that can decide L_{B}.
What will be the output of $M_{i}\left(1^{n_{i}}\right)$ when M_{i} has access to B_{i} ?
Observation: M_{i} on $1^{n_{i}}$ with access to B_{i} runs the same as M_{i} on $1^{n_{i}}$ with access to B_{i-1} as M_{i} cannot query on x by construction. Now,

- If $M_{i}^{B_{i}}\left(1^{n_{i}}\right)=1$, then B contains so string of length n_{i}.

Baker Gill Solovay's Theorem

We claim that L_{B}, where $B=\cup_{i} B_{i}$, can not be decided by any polytime oracle TM with access to B.

Suppose \exists a polytime TM M_{i} with access to B that can decide L_{B}.
What will be the output of $M_{i}\left(1^{n_{i}}\right)$ when M_{i} has access to B_{i} ?
Observation: M_{i} on $1^{n_{i}}$ with access to B_{i} runs the same as M_{i} on $1^{n_{i}}$ with access to B_{i-1} as M_{i} cannot query on x by construction. Now,

- If $M_{i}^{B_{i}}\left(1^{n_{i}}\right)=1$, then B contains so string of length n_{i}.
- If $M_{i}^{B_{i}}\left(1^{n_{i}}\right)=0$, then B contains x, a string of length n_{i}.

Baker Gill Solovay's Theorem

We claim that L_{B}, where $B=\cup_{i} B_{i}$, can not be decided by any polytime oracle TM with access to B.

Suppose \exists a polytime TM M_{i} with access to B that can decide L_{B}.
What will be the output of $M_{i}\left(1^{n_{i}}\right)$ when M_{i} has access to B_{i} ?
Observation: M_{i} on $1^{n_{i}}$ with access to B_{i} runs the same as M_{i} on $1^{n_{i}}$ with access to B_{i-1} as M_{i} cannot query on x by construction. Now,

- If $M_{i}^{B_{i}}\left(1^{n_{i}}\right)=1$, then B contains so string of length $n_{i} \longrightarrow$
- If $M_{i}^{B_{i}}\left(1^{n_{i}}\right)=0$, then B contains x, a string of length n_{i}.

Baker Gill Solovay's Theorem

We claim that L_{B}, where $B=\cup_{i} B_{i}$, can not be decided by any polytime oracle TM with access to B.

Suppose \exists a polytime TM M_{i} with access to B that can decide L_{B}.
What will be the output of $M_{i}\left(1^{n_{i}}\right)$ when M_{i} has access to B_{i} ?
Observation: M_{i} on $1^{n_{i}}$ with access to B_{i} runs the same as M_{i} on $1^{n_{i}}$ with access to B_{i-1} as M_{i} cannot query on x by construction. Now,

- If $M_{i}^{B_{i}}\left(1^{n_{i}}\right)=1$, then B contains so string of length n_{i}.

contradiction!
- If $M_{i}^{B_{i}}\left(1^{n_{i}}\right)=0$, then B contains x, a string of length n_{i}.

Baker Gill Solovay's Theorem

We claim that L_{B}, where $B=\cup_{i} B_{i}$, can not be decided by any polytime oracle TM with access to B.

Suppose \exists a polytime TM M_{i} with access to B that can decide L_{B}.
What will be the output of $M_{i}\left(1^{n_{i}}\right)$ when M_{i} has access to B_{i} ?
Observation: M_{i} on $1^{n_{i}}$ with access to B_{i} runs the same as M_{i} on $1^{n_{i}}$ with access to B_{i-1} as M_{i} cannot query on x by construction. Now,

- If $M_{i}^{B_{i}}\left(1^{n_{i}}\right)=1$, then B contains so string of length n_{i}.
- If $M_{i}^{B_{i}}\left(1^{n_{i}}\right)=0$, then B contains x, a string of length n_{i}.

Baker Gill Solovay's Theorem

We claim that L_{B}, where $B=\cup_{i} B_{i}$, can not be decided by any polytime oracle TM with access to B.

Suppose \exists a polytime TM M_{i} with access to B that can decide L_{B}.
What will be the output of $M_{i}\left(1^{n_{i}}\right)$ when M_{i} has access to B_{i} ?
Observation: M_{i} on $1^{n_{i}}$ with access to B_{i} runs the same as M_{i} on $1^{n_{i}}$ with access to B_{i-1} as M_{i} cannot query on x by construction. Now,

- If $M_{i}^{B_{i}}\left(1^{n_{i}}\right)=1$, then B contains so string of length n_{i}.
- If $M_{i}^{B_{i}}\left(1^{n_{i}}\right)=0$, then B contains x, a string of length n_{i}.
M_{i} 's output on $1^{n_{i}}$ with access to be B_{i} and B is same

Baker Gill Solovay's Theorem

We claim that L_{B}, where $B=\cup_{i} B_{i}$, can not be decided by any polytime oracle TM with access to B.

Suppose \exists a polytime TM M_{i} with access to B that can decide L_{B}.
What will be the output of $M_{i}\left(1^{n_{i}}\right)$ when M_{i} has access to B_{i} ?
Observation: M_{i} on $1^{n_{i}}$ with access to B_{i} runs the same as M_{i} on $1^{n_{i}}$ with access to B_{i-1} as M_{i} cannot query on x by construction. Now,

- If $M_{i}^{B_{i}}\left(1^{n_{i}}\right)=1$, then B contains so string of length n_{i}.
- If $M_{i}^{B_{i}}\left(1^{n_{i}}\right)=0$, then B contains x, a string of length $n_{i} \longrightarrow$ contradictíon!
M_{i}^{\prime} 's output on $1^{n_{i}}$ with access to be B_{i} and B is same as M_{i} cannot query of strings in

Baker Gill Solovay's Theorem

We claim that L_{B}, where $B=\cup_{i} B_{i}$, can not be decided by any polytime oracle TM with access to B.

Suppose \exists a polytime TM M_{i} with access to B that can decide L_{B}.
What will be the output of $M_{i}\left(1^{n_{i}}\right)$ when M_{i} has access to B_{i} ?
Observation: M_{i} on $1^{n_{i}}$ with access to B_{i} runs the same as M_{i} on $1^{n_{i}}$ with access to B_{i-1} as M_{i} cannot query on x by construction. Now,

- If $M_{i}^{B_{i}}\left(1^{n_{i}}\right)=1$, then B contains so string of length n_{i}.
- If $M_{i}^{B_{i}}\left(1^{n_{i}}\right)=0$, then B contains x, a string of length $n_{i} \longrightarrow$ contradiction!
M_{i}^{\prime} s output on $1^{n_{i}}$ with access to be B_{i} and B is same as M_{i} cannot query of strings in $B \backslash B_{i}$ because string in $B \backslash B_{i}$ are of length larger than $p_{i}\left(n_{i}\right)$.

Baker Gill Solovay's Theorem

We claim that L_{B}, where $B=\cup_{i} B_{i}$, can not be decided by any polytime oracle TM with access to B.

Suppose \exists a polytime TM M_{i} with access to B that can decide L_{B}.
What will be the output of $M_{i}\left(1^{n_{i}}\right)$ when M_{i} has access to B_{i} ?
Observation: M_{i} on $1^{n_{i}}$ with access to B_{i} runs the same as M_{i} on $1^{n_{i}}$ with access to B_{i-1} as M_{i} cannot query on x by construction. Now,

- If $M_{i}^{B_{i}}\left(1^{n_{i}}\right)=1$, then B contains so string of length n_{i}.
- If $M_{i}^{B_{i}}\left(1^{n_{i}}\right)=0$, then B contains x, a string of length $n_{i} \longrightarrow$ contradictíon!
M_{i}^{\prime} s output on $1^{n_{i}}$ with access to be B_{i} and B is same as M_{i} cannot query of strings in $B \backslash B_{i}$ because string in $B \backslash B_{i}$ are of length larger than $p_{i}\left(n_{i}\right)$. Hence, contradiction stays!

Baker Gill Solovay's Theorem

We claim that L_{B}, where $B=\cup_{i} B_{i}$, can not be decided by any polytime oracle TM with access to B.

Suppose \exists a polytime TM M_{i} with access to B that can decide L_{B}.
What will be the output of $M_{i}\left(1^{n_{i}}\right)$ when M_{i} has access to B_{i} ?
Observation: M_{i} on $1^{n_{i}}$ with access to B_{i} runs the same as M_{i} on $1^{n_{i}}$ with access to B_{i-1} as M_{i} cannot query on x by construction. Now,

- If $M_{i}^{B_{i}}\left(1^{n_{i}}\right)=1$, then B contains so string of length n_{i}.
- If $M_{i}^{B_{i}}\left(1^{n_{i}}\right)=0$, then B contains x, a string of length $n_{i} \longrightarrow$ contradictíon!
M_{i}^{\prime} s output on $1^{n_{i}}$ with access to be B_{i} and B is same as M_{i} cannot query of strings in $B \backslash B_{i}$ because string in $B \backslash B_{i}$ are of length larger than $p_{i}\left(n_{i}\right)$. Hence, contradiction stays!

