Lecture 24

Theorem (BGS75): There exist oracles A and B such that $P^A = NP^A$ and $P^B \neq NP^B$.

Theorem (BGS75): There exist oracles A and B such that $P^A = NP^A$ and $P^B \neq NP^B$.

Proof:

Proof: We already know that A = EXPCOM.

- **Theorem (BGS75)**: There exist oracles A and B such that $\mathbf{P}^A = \mathbf{NP}^A$ and $\mathbf{P}^B \neq \mathbf{NP}^B$.

Proof: We already know that A = EXPCOM.

We want to find a *B* such that $\mathbf{P}^{B} \subset \mathbf{NP}^{B}$.

- **Theorem (BGS75)**: There exist oracles A and B such that $P^A = NP^A$ and $P^B \neq NP^B$.

Proof: We already know that A = EXPCOM.

We want to find a *B* such that $P^B \subset NP^B$.

For any oracle (or language) B, define L_{R} as:

- **Theorem (BGS75)**: There exist oracles A and B such that $P^A = NP^A$ and $P^B \neq NP^B$.

- **Theorem (BGS75)**: There exist oracles A and B such that $P^A = NP^A$ and $P^B \neq NP^B$.
- **Proof:** We already know that A = EXPCOM.
 - We want to find a B such that $P^B \subset NP^B$.
 - For any oracle (or language) B, define L_B as:
 - $L_B = \{1^n \mid B \text{ has a string of length } n \text{ in it} \}$

- **Proof:** We already know that A = EXPCOM.
 - We want to find a *B* such that $P^B \subset NP^B$.
 - For any oracle (or language) B, define L_{R} as:

 $L_{\mathbf{R}} = \{1^n \mid B \text{ has a string of length } n \text{ in it}\}$

Claim:

Theorem (BGS75): There exist oracles A and B such that $\mathbf{P}^A = \mathbf{N}\mathbf{P}^A$ and $\mathbf{P}^B \neq \mathbf{N}\mathbf{P}^B$.

- **Theorem (BGS75)**: There exist oracles A and B such that $P^A = NP^A$ and $P^B \neq NP^B$.
- **Proof:** We already know that A = EXPCOM.
 - We want to find a B such that $P^B \subset NP^B$.
 - For any oracle (or language) B, define L_B as:
 - $L_B = \{1^n \mid B \text{ has a string of length } n \text{ in it}\}$
 - **Claim:** $L_B \in NP^B$ for any B.

- **Proof:** We already know that A = EXPCOM.
 - We want to find a *B* such that $P^B \subset NP^B$.
 - For any oracle (or language) B_{i} , define L_{R} as:

Claim: $L_B \in NP^B$ for any B. **Proof:**

Theorem (BGS75): There exist oracles A and B such that $\mathbf{P}^A = \mathbf{N}\mathbf{P}^A$ and $\mathbf{P}^B \neq \mathbf{N}\mathbf{P}^B$.

 $L_{R} = \{1^{n} \mid B \text{ has a string of length } n \text{ in it}\}$

- **Theorem (BGS75)**: There exist oracles A and B such that $\mathbf{P}^A = \mathbf{NP}^A$ and $\mathbf{P}^B \neq \mathbf{NP}^B$.
- **Proof:** We already know that A = EXPCOM.
 - We want to find a B such that $P^B \subset NP^B$.
 - For any oracle (or language) B, define L_B as:
 - $L_B = \{1^n \mid B \text{ has a string of length } n \text{ in it} \}$
 - **Claim:** $L_B \in NP^B$ for any B. **Proof:** Oracle NP machine on input 1^n

- **Theorem (BGS75)**: There exist oracles A and B such that $P^A = NP^A$ and $P^B \neq NP^B$.
- **Proof:** We already know that A = EXPCOM.
 - We want to find a B such that $P^B \subset NP^B$.
 - For any oracle (or language) B, define L_B as:
 - $L_B = \{1^n \mid B \text{ has a string of length } n \text{ in it} \}$
 - **Claim:** $L_B \in NP^B$ for any B. **Proof:** Oracle NP machine on input 1^n will guess all strings of length n

- **Theorem (BGS75)**: There exist oracles A and B such that $P^A = NP^A$ and $P^B \neq NP^B$.
- **Proof:** We already know that A = EXPCOM.
 - We want to find a B such that $P^B \subset NP^B$.
 - For any oracle (or language) B, define L_B as:
 - $L_B = \{1^n \mid B \text{ has a string of length } n \text{ in it} \}$
 - **Claim:** $L_B \in NP^B$ for any B. **Proof:** Oracle NP machine on input 1^n will guess all strings of length n and ask

- **Theorem (BGS75)**: There exist oracles A and B such that $P^A = NP^A$ and $P^B \neq NP^B$.
- **Proof:** We already know that A = EXPCOM.
 - We want to find a *B* such that $P^B \subset NP^B$.
 - For any oracle (or language) B_{i} , define L_{R} as:
 - $L_{R} = \{1^{n} \mid B \text{ has a string of length } n \text{ in it}\}$
 - **Claim:** $L_B \in NP^B$ for any B.
 - **Proof:** Oracle NP machine on input 1^n will guess all strings of length n and ask oracle whether generated string belongs to B

- **Theorem (BGS75)**: There exist oracles A and B such that $P^A = NP^A$ and $P^B \neq NP^B$.
- **Proof:** We already know that A = EXPCOM.
 - We want to find a *B* such that $P^B \subset NP^B$.
 - For any oracle (or language) B, define L_{R} as:
 - $L_{R} = \{1^{n} \mid B \text{ has a string of length } n \text{ in it}\}$
 - **Claim:** $L_B \in NP^B$ for any B.
 - **Proof:** Oracle NP machine on input 1^n will guess all strings of length n and ask oracle whether generated string belongs to B and answer accordingly.

- **Theorem (BGS75)**: There exist oracles A and B such that $P^A = NP^A$ and $P^B \neq NP^B$.
- **Proof:** We already know that A = EXPCOM.
 - We want to find a *B* such that $P^B \subset NP^B$.
 - For any oracle (or language) B, define L_{R} as:
 - $L_{R} = \{1^{n} \mid B \text{ has a string of length } n \text{ in it}\}$
 - **Claim:** $L_B \in NP^B$ for any B.
 - **Proof:** Oracle NP machine on input 1^n will guess all strings of length n and ask oracle whether generated string belongs to B and answer accordingly.
 - We now want to construct a B so that L_{R} cannot be decided

- **Theorem (BGS75)**: There exist oracles A and B such that $P^A = NP^A$ and $P^B \neq NP^B$.
- **Proof:** We already know that A = EXPCOM.
 - We want to find a *B* such that $P^B \subset NP^B$.
 - For any oracle (or language) B, define L_{R} as:
 - $L_{R} = \{1^{n} \mid B \text{ has a string of length } n \text{ in it}\}$
 - **Claim:** $L_B \in NP^B$ for any B.
 - **Proof:** Oracle NP machine on input 1^n will guess all strings of length n and ask oracle whether generated string belongs to B and answer accordingly.
- - We now want to construct a B so that L_{R} cannot be decided by any polytime

- **Theorem (BGS75)**: There exist oracles A and B such that $P^A = NP^A$ and $P^B \neq NP^B$.
- **Proof:** We already know that A = EXPCOM.
 - We want to find a *B* such that $P^B \subset NP^B$.
 - For any oracle (or language) B, define L_{R} as:
 - $L_{R} = \{1^{n} \mid B \text{ has a string of length } n \text{ in it}\}$
 - **Claim:** $L_B \in NP^B$ for any B.
 - **Proof:** Oracle NP machine on input 1^n will guess all strings of length n and ask oracle whether generated string belongs to B and answer accordingly.
- - We now want to construct a B so that L_R cannot be decided by any polytime oracle DTM with access to B.

- **Theorem (BGS75)**: There exist oracles A and B such that $P^A = NP^A$ and $P^B \neq NP^B$.
- **Proof:** We already know that A = EXPCOM.
 - We want to find a *B* such that $P^B \subset NP^B$.
 - For any oracle (or language) B, define L_{R} as:
 - $L_{R} = \{1^{n} \mid B \text{ has a string of length } n \text{ in it}\}$
 - **Claim:** $L_B \in NP^B$ for any B.
 - **Proof:** Oracle NP machine on input 1^n will guess all strings of length n and ask oracle whether generated string belongs to B and answer accordingly.
- - We now want to construct a B so that L_{R} cannot be decided by any polytime oracle DTM with access to B.

Warmup Claim:

Warmup Claim: For any polytime, oracle DTM M, there exists a language B

Warmup Claim: For any polytime, oracle DTM M, there exists a language B

such that M^B does not decide L_R .

Warmup Claim: For any polytime, oracle DTM M, there exists a language B

such that M^B does not decide L_B .

Proof:

Warmup Claim: For any polytime, oracle DTM M, there exists a language B

such that M^B does not decide L_R .

Proof: Let p(n) be M's runtime.

Warmup Claim: For any polytime, oracle DTM M, there exists a language B

such that M^B does not decide L_R .

Proof: Let p(n) be M's runtime. Let n be an integer such that $2^n > p(n)$.

Warmup Claim: For any polytime, oracle DTM M, there exists a language B

such that M^B does not decide L_R .

Proof: Let p(n) be M's runtime. Let n be an integer such that $2^n > p(n)$.

Idea: Exploit the fact that on input 1^n , M cannot query on all strings of length n.

Warmup Claim: For any polytime, oracle DTM M, there exists a language B

such that M^B does not decide L_R .

Proof: Let p(n) be M's runtime. Let n be an integer such that $2^n > p(n)$.

- Idea: Exploit the fact that on input 1^n , M cannot query on all strings of length n.

Warmup Claim: For any polytime, oracle DTM M, there exists a language B

such that M^B does not decide L_B .

Proof: Let p(n) be M's runtime. Let n be an integer such that $2^n > p(n)$.

We define B in the following way:

• Run $M(1^n)$ and answer "no" to all the queries.

- Idea: Exploit the fact that on input 1^n , M cannot query on all strings of length n.

Warmup Claim: For any polytime, oracle DTM M, there exists a language B

such that M^B does not decide L_B .

Proof: Let p(n) be M's runtime. Let n be an integer such that $2^n > p(n)$.

- Run $M(1^n)$ and answer "no" to all the queries.
- Let *b* be the output of *M*

- Idea: Exploit the fact that on input 1^n , M cannot query on all strings of length n.

Warmup Claim: For any polytime, oracle DTM M, there exists a language B

such that M^B does not decide L_R .

Proof: Let p(n) be M's runtime. Let n be an integer such that $2^n > p(n)$.

- Run $M(1^n)$ and answer "no" to all the queries.
- Let b be the output of M and $Q = \{q_1, q_2, \dots, \}$ be the set of queries of length n.

- Idea: Exploit the fact that on input 1^n , M cannot query on all strings of length n.

Warmup Claim: For any polytime, oracle DTM M, there exists a language B

such that M^B does not decide L_R .

Proof: Let p(n) be M's runtime. Let n be an integer such that $2^n > p(n)$.

- Run $M(1^n)$ and answer "no" to all the queries.
- Let b be the output of M and $Q = \{q_1, q_2, \dots, \}$ be the set of queries of length n.
- Take any $x \in \{0,1\}^n \setminus Q$.

- Idea: Exploit the fact that on input 1^n , M cannot query on all strings of length n.

Warmup Claim: For any polytime, oracle DTM M, there exists a language B

such that M^B does not decide L_R .

Proof: Let p(n) be M's runtime. Let n be an integer such that $2^n > p(n)$.

- Run $M(1^n)$ and answer "no" to all the queries.
- Let b be the output of M and $Q = \{q_1, q_2, \dots, \}$ be the set of queries of length n.
- Take any $x \in \{0,1\}^n \setminus Q$. (Such an x exists because $2^n > p(n)$)

- Idea: Exploit the fact that on input 1^n , M cannot query on all strings of length n.

Warmup Claim: For any polytime, oracle DTM M, there exists a language B

such that M^B does not decide L_B .

Proof: Let p(n) be M's runtime. Let n be an integer such that $2^n > p(n)$.

- Run $M(1^n)$ and answer "no" to all the queries.
- Let b be the output of M and $Q = \{q_1, q_2, \dots, \}$ be the set of queries of length n.
- Take any $x \in \{0,1\}^n \setminus Q$. (Such an x exists because $2^n > p(n)$)
- If b = 0, then put x in B

- Idea: Exploit the fact that on input 1^n , M cannot query on all strings of length n.

Warmup Claim: For any polytime, oracle DTM M, there exists a language B

such that M^B does not decide L_B .

Proof: Let p(n) be M's runtime. Let n be an integer such that $2^n > p(n)$.

- Run $M(1^n)$ and answer "no" to all the queries.
- Let b be the output of M and $Q = \{q_1, q_2, \dots, \}$ be the set of queries of length n.
- Take any $x \in \{0,1\}^n \setminus Q$. (Such an x exists because $2^n > p(n)$)
- If b = 0, then put x in B, else, keep B empty.

- Idea: Exploit the fact that on input 1^n , M cannot query on all strings of length n.

Warmup Claim: For any polytime, oracle DTM M, there exists a language B

such that M^B does not decide L_B .

Proof: Let p(n) be M's runtime. Let n be an integer such that $2^n > p(n)$.

We define B in the following way:

- Run $M(1^n)$ and answer "no" to all the queries.
- Let b be the output of M and $Q = \{q_1, q_2, \dots, \}$ be the set of queries of length n.
- Take any $x \in \{0,1\}^n \setminus Q$. (Such an x exists because $2^n > p(n)$)
- If b = 0, then put x in B, else, keep B empty.

Now, $M^B(1^n)$ will be wrong by construction of B.

- Idea: Exploit the fact that on input 1^n , M cannot query on all strings of length n.

Warmup Claim: For any polytime, oracle DTM M, there exists a language B

such that M^B does not decide L_B .

Proof: Let p(n) be M's runtime. Let n be an integer such that $2^n > p(n)$.

We define B in the following way:

- Run $M(1^n)$ and answer "no" to all the queries.
- Let b be the output of M and $Q = \{q_1, q_2, \dots, \}$ be the set of queries of length n.
- Take any $x \in \{0,1\}^n \setminus Q$. (Such an x exists because $2^n > p(n)$)
- If b = 0, then put x in B, else, keep B empty.

Now, $M^B(1^n)$ will be wrong by construction of B.

- Idea: Exploit the fact that on input 1^n , M cannot query on all strings of length n.

Let's design a B so that

Let's design a B so that no polytime oracle DTM with access to B can decide L_R .

Let's design a B so that no polytime oracle DTM with access to B can decide L_B .

Consider a sequence of M_1, M_2, \ldots of oracle DTMs with runtime $p_1(n), p_2(n), \ldots$

Let's design a B so that no polytime oracle DTM with access to B can decide L_B .

Consider a sequence of M_1, M_2, \ldots of oracle DTMs with runtime $p_1(n), p_2(n), \ldots$

We will build *B* inductively.

Let's design a B so that no polytime oracle DTM with access to B can decide L_{R} .

Consider a sequence of M_1, M_2, \ldots of oracle DTMs with runtime $p_1(n), p_2(n), \ldots$

We will build **B** inductively. Let $B_0 = \emptyset$, $n_0 = 1$, $p_0 = c$.

Let's design a B so that no polytime oracle DTM with access to B can decide L_{R} .

Consider a sequence of M_1, M_2, \ldots of oracle DTMs with runtime $p_1(n), p_2(n), \ldots$

We will build **B** inductively. Let $B_0 = \emptyset$, $n_0 = 1$, $p_0 = c$.

In the *i*th iteration:

- Let's design a B so that no polytime oracle DTM with access to B can decide L_B .
- Consider a sequence of M_1, M_2, \ldots of oracle DTMs with runtime $p_1(n), p_2(n), \ldots$
- We will build **B** inductively. Let $B_0 = \emptyset$, $n_0 = 1$, $p_0 = c$.
- In the *i*th iteration:
- Let n_i be the smallest integer s.t. $2^{n_i} > p_i(n_i)$ and $n_i > p_j(n_j)$ for all $1 \le j < i$.

- Let's design a B so that no polytime oracle DTM with access to B can decide L_B .
- Consider a sequence of M_1, M_2, \ldots of oracle DTMs with runtime $p_1(n), p_2(n), \ldots$
- We will build **B** inductively. Let $B_0 = \emptyset$, $n_0 = 1$, $p_0 = c$.
- In the *i*th iteration:
- Let n_i be the smallest integer s.t. $2^{n_i} > p_i(n_i)$ and $n_i > p_j(n_j)$ for all $1 \le j < i$.
- We define B_i in the following way:

- Let's design a B so that no polytime oracle DTM with access to B can decide L_B .
- Consider a sequence of M_1, M_2, \ldots of oracle DTMs with runtime $p_1(n), p_2(n), \ldots$
- We will build **B** inductively. Let $B_0 = \emptyset$, $n_0 = 1$, $p_0 = c$. In the *i*th iteration:
- Let n_i be the smallest integer s.t. $2^{n_i} > p_i(n_i)$ and $n_i > p_j(n_j)$ for all $1 \le j < i$.
- We define B_i in the following way:
 - Run $M_i(1^{n_i})$ and respond to its queries according to B_{i-1} .

- Let's design a B so that no polytime oracle DTM with access to B can decide L_B .
- Consider a sequence of M_1, M_2, \ldots of oracle DTMs with runtime $p_1(n), p_2(n), \ldots$
- We will build **B** inductively. Let $B_0 = \emptyset$, $n_0 = 1$, $p_0 = c$. In the *i*th iteration:
- Let n_i be the smallest integer s.t. $2^{n_i} > p_i(n_i)$ and $n_i > p_j(n_j)$ for all $1 \le j < i$.
- We define B_i in the following way:
 - Run $M_i(1^{n_i})$ and respond to its queries according to B_{i-1} .
 - Let b be the output of M_i

- Let's design a B so that no polytime oracle DTM with access to B can decide L_{R} .
- Consider a sequence of M_1, M_2, \ldots of oracle DTMs with runtime $p_1(n), p_2(n), \ldots$
- We will build **B** inductively. Let $B_0 = \emptyset$, $n_0 = 1$, $p_0 = c$. In the *i*th iteration:
- Let n_i be the smallest integer s.t. $2^{n_i} > p_i(n_i)$ and $n_i > p_j(n_j)$ for all $1 \le j < i$.
- We define B_i in the following way:
 - Run $M_i(1^{n_i})$ and respond to its queries according to B_{i-1} .
 - Let b be the output of M_i and $Q = \{q_1, q_2, \dots, \}$ be the set of queries of length n_i .

- Let's design a B so that no polytime oracle DTM with access to B can decide L_R .
- Consider a sequence of M_1, M_2, \ldots of oracle DTMs with runtime $p_1(n), p_2(n), \ldots$
- We will build **B** inductively. Let $B_0 = \emptyset$, $n_0 = 1$, $p_0 = c$. In the *i*th iteration:
- Let n_i be the smallest integer s.t. $2^{n_i} > p_i(n_i)$ and $n_i > p_i(n_i)$ for all $1 \le j < i$.
- We define B_i in the following way:
 - Run $M_i(1^{n_i})$ and respond to its queries according to B_{i-1} .
 - Let b be the output of M_i and $Q = \{q_1, q_2, \dots, \}$ be the set of queries of length n_i .
 - Take any $\mathbf{x} \in \{0,1\}^{n_i} \setminus Q$.

- Let's design a B so that no polytime oracle DTM with access to B can decide L_{R} .
- Consider a sequence of M_1, M_2, \ldots of oracle DTMs with runtime $p_1(n), p_2(n), \ldots$
- We will build **B** inductively. Let $B_0 = \emptyset$, $n_0 = 1$, $p_0 = c$. In the *i*th iteration:
- Let n_i be the smallest integer s.t. $2^{n_i} > p_i(n_i)$ and $n_i > p_i(n_i)$ for all $1 \le j < i$.
- We define B_i in the following way:
 - Run $M_i(1^{n_i})$ and respond to its queries according to B_{i-1} .
 - Let b be the output of M_i and $Q = \{q_1, q_2, \dots, \}$ be the set of queries of length n_i .
 - Take any $x \in \{0,1\}^{n_i} \setminus Q$. (Such an x exists because $2^{n_i} > p(n_i)$)

Let's design a B so that no polytime oracle DTM with access to B can decide L_{R} .

Consider a sequence of M_1, M_2, \ldots of oracle DTMs with runtime $p_1(n), p_2(n), \ldots$

We will build **B** inductively. Let $B_0 = \emptyset$, $n_0 = 1$, $p_0 = c$. In the *i*th iteration:

- Let n_i be the smallest integer s.t. $2^{n_i} > p_i(n_i)$ and $n_i > p_i(n_i)$ for all $1 \le j < i$.
- We define B_i in the following way:
 - Run $M_i(1^{n_i})$ and respond to its queries according to B_{i-1} .
 - Let b be the output of M_i and $Q = \{q_1, q_2, \dots, \}$ be the set of queries of length n_i .
 - Take any $x \in \{0,1\}^{n_i} \setminus Q$. (Such an x exists because $2^{n_i} > p(n_i)$)
 - If b = 0, then set $B_i = B_{i-1} \cup x$

- Let's design a B so that no polytime oracle DTM with access to B can decide L_{R} .
- Consider a sequence of M_1, M_2, \ldots of oracle DTMs with runtime $p_1(n), p_2(n), \ldots$
- We will build **B** inductively. Let $B_0 = \emptyset$, $n_0 = 1$, $p_0 = c$. In the *i*th iteration:
- Let n_i be the smallest integer s.t. $2^{n_i} > p_i(n_i)$ and $n_i > p_i(n_i)$ for all $1 \le j < i$.
- We define B_i in the following way:
 - Run $M_i(1^{n_i})$ and respond to its queries according to B_{i-1} .
 - Let b be the output of M_i and $Q = \{q_1, q_2, \dots, \}$ be the set of queries of length n_i .
 - Take any $x \in \{0,1\}^{n_i} \setminus Q$. (Such an x exists because $2^{n_i} > p(n_i)$)
 - If b = 0, then set $B_i = B_{i-1} \cup x$, else, set $B_i = B_{i-1}$.

- Let's design a B so that no polytime oracle DTM with access to B can decide L_{R} .
- Consider a sequence of M_1, M_2, \ldots of oracle DTMs with runtime $p_1(n), p_2(n), \ldots$
- We will build **B** inductively. Let $B_0 = \emptyset$, $n_0 = 1$, $p_0 = c$. In the *i*th iteration:
- Let n_i be the smallest integer s.t. $2^{n_i} > p_i(n_i)$ and $n_i > p_i(n_i)$ for all $1 \le j < i$.
- We define B_i in the following way:
 - Run $M_i(1^{n_i})$ and respond to its queries according to B_{i-1} .
 - Let b be the output of M_i and $Q = \{q_1, q_2, \dots, \}$ be the set of queries of length n_i .
 - Take any $x \in \{0,1\}^{n_i} \setminus Q$. (Such an x exists because $2^{n_i} > p(n_i)$)
 - If b = 0, then set $B_i = B_{i-1} \cup x$, else, set $B_i = B_{i-1}$.

We claim that L_B , where $B = \bigcup_i B_i$

We claim that L_B , where $B = \bigcup_i B_i$, can not be decided by any polytime oracle TM with access to B.

Suppose \exists a polytime TM M_i with access to B that can decide L_R .

We claim that L_{B} , where $B = \bigcup_{i} B_{i}$, can not be decided by any polytime oracle TM with access to B.

Suppose \exists a polytime TM M_i with access to B that can decide L_R .

What will be the output of $M_i(1^{n_i})$ when M_i has access to B_i ?

We claim that L_{B} , where $B = \bigcup_{i} B_{i}$, can not be decided by any polytime oracle TM with access to B.

Suppose \exists a polytime TM M_i with access to B that can decide L_R .

What will be the output of $M_i(1^{n_i})$ when M_i has access to B_i ? **Observation:** M_i on 1^{n_i} with access to B_i

We claim that L_R , where $B = \bigcup_i B_i$, can not be decided by any polytime oracle TM with access to B.

Suppose \exists a polytime TM M_i with access to B that can decide L_R .

What will be the output of $M_i(1^{n_i})$ when M_i has access to B_i ? **Observation:** M_i on 1^{n_i} with access to B_i runs the same as

We claim that L_{B} , where $B = \bigcup_{i} B_{i}$, can not be decided by any polytime oracle TM with access to B.

Suppose \exists a polytime TM M_i with access to B that can decide L_R .

What will be the output of $M_i(1^{n_i})$ when M_i has access to B_i ?

- **Observation:** M_i on 1^{n_i} with access to B_i runs the same as M_i on 1^{n_i} with access to B_{i-1}

We claim that L_{B} , where $B = \bigcup_{i} B_{i}$, can not be decided by any polytime oracle TM with access to B.

Suppose \exists a polytime TM M_i with access to B that can decide L_R . What will be the output of $M_i(1^{n_i})$ when M_i has access to B_i ? as M_i cannot query on x by construction.

- **Observation:** M_i on 1^{n_i} with access to B_i runs the same as M_i on 1^{n_i} with access to B_{i-1}

We claim that L_{B} , where $B = \bigcup_{i} B_{i}$, can not be decided by any polytime oracle TM with access to B.

Suppose \exists a polytime TM M_i with access to B that can decide L_R . What will be the output of $M_i(1^{n_i})$ when M_i has access to B_i ? as M_i cannot query on x by construction. Now,

- **Observation:** M_i on 1^{n_i} with access to B_i runs the same as M_i on 1^{n_i} with access to B_{i-1}

We claim that L_{B} , where $B = \bigcup_{i} B_{i}$, can not be decided by any polytime oracle TM with access to B.

Suppose \exists a polytime TM M_i with access to B that can decide L_R . What will be the output of $M_i(1^{n_i})$ when M_i has access to B_i ? as M_i cannot query on x by construction. Now, • If $M_i^{B_i}(1^{n_i}) = 1$, then B contains so string of length n_i .

- **Observation:** M_i on 1^{n_i} with access to B_i runs the same as M_i on 1^{n_i} with access to B_{i-1}

- access to B.
- Suppose \exists a polytime TM M_i with access to B that can decide L_B . What will be the output of $M_i(1^{n_i})$ when M_i has access to B_i ? **Observation:** M_i on 1^{n_i} with access to B_i runs the same as M_i on 1^{n_i} with access to B_{i-1} as M_i cannot query on x by construction. Now,
- If $M_i^{B_i}(1^{n_i}) = 1$, then B contains so string of length n_i .
- If $M_i^{B_i}(1^{n_i}) = 0$, then B contains x, a string of length n_i .

- access to B.
- Suppose \exists a polytime TM M_i with access to B that can decide L_B . What will be the output of $M_i(1^{n_i})$ when M_i has access to B_i ? **Observation:** M_i on 1^{n_i} with access to B_i runs the same as M_i on 1^{n_i} with access to B_{i-1} as M_i cannot query on x by construction. Now,
- If $M_i^{B_i}(1^{n_i}) = 1$, then B contains so string of length n_i .
- If $M_i^{B_i}(1^{n_i}) = 0$, then *B* contains *x*, a string of length n_i .

- access to B.
- Suppose \exists a polytime TM M_i with access to B that can decide L_B . What will be the output of $M_i(1^{n_i})$ when M_i has access to B_i ? **Observation:** M_i on 1^{n_i} with access to B_i runs the same as M_i on 1^{n_i} with access to B_{i-1} as M_i cannot query on x by construction. Now,
- If $M_i^{B_i}(1^{n_i}) = 1$, then B contains so string of length n_i . Contradiction!
- If $M_{i}^{B_{i}}(1^{n_{i}}) = 0$, then *B* contains *x*, a string of length n_{i} .

- access to B.
- Suppose \exists a polytime TM M_i with access to B that can decide L_B . What will be the output of $M_i(1^{n_i})$ when M_i has access to B_i ? **Observation:** M_i on 1^{n_i} with access to B_i runs the same as M_i on 1^{n_i} with access to B_{i-1} as M_i cannot query on x by construction. Now,
- If $M_i^{B_i}(1^{n_i}) = 1$, then B contains so string of length n_i . Contradiction!
- If $M_i^{B_i}(1^{n_i}) = 0$, then B contains x, a string of length n_i .

- access to B.
- Suppose \exists a polytime TM M_i with access to B that can decide L_B . What will be the output of $M_i(1^{n_i})$ when M_i has access to B_i ? **Observation:** M_i on 1^{n_i} with access to B_i runs the same as M_i on 1^{n_i} with access to B_{i-1} as M_i cannot query on x by construction. Now,
- If $M_i^{B_i}(1^{n_i}) = 1$, then B contains so string of length n_i . Contradiction!
- If $M_i^{B_i}(1^{n_i}) = 0$, then B contains x, a string of length n_i .

 M_i 's output on 1^{n_i} with access to be B_i and B is same

- access to B.
- Suppose \exists a polytime TM M_i with access to B that can decide L_B . What will be the output of $M_i(1^{n_i})$ when M_i has access to B_i ? **Observation:** M_i on 1^{n_i} with access to B_i runs the same as M_i on 1^{n_i} with access to B_{i-1} as M_i cannot query on x by construction. Now,
- If $M_i^{B_i}(1^{n_i}) = 1$, then B contains so string of length n_i . Contradiction! • If $M_i^{B_i}(1^{n_i}) = 0$, then B contains x, a string of length n_i .

 M_i 's output on 1^{n_i} with access to be B_i and B is same as M_i cannot query of strings in

We claim that L_{R} , where $B = \bigcup_{i} B_{i}$, can not be decided by any polytime oracle TM with

- access to B.
- Suppose \exists a polytime TM M_i with access to B that can decide L_B . What will be the output of $M_i(1^{n_i})$ when M_i has access to B_i ? **Observation:** M_i on 1^{n_i} with access to B_i runs the same as M_i on 1^{n_i} with access to B_{i-1} as M_i cannot query on x by construction. Now,
- If $M_i^{B_i}(1^{n_i}) = 1$, then B contains so string of length n_i . Contradiction! • If $M_i^{B_i}(1^{n_i}) = 0$, then B contains x, a string of length n_i .

 $B \setminus B_i$ because string in $B \setminus B_i$ are of length larger than $p_i(n_i)$.

We claim that L_{R} , where $B = \bigcup_{i} B_{i}$, can not be decided by any polytime oracle TM with

 M_i 's output on 1^{n_i} with access to be B_i and B is same as M_i cannot query of strings in

- access to B.
- Suppose \exists a polytime TM M_i with access to B that can decide L_B . What will be the output of $M_i(1^{n_i})$ when M_i has access to B_i ? **Observation:** M_i on 1^{n_i} with access to B_i runs the same as M_i on 1^{n_i} with access to B_{i-1} as M_i cannot query on x by construction. Now,
- If $M_i^{B_i}(1^{n_i}) = 1$, then B contains so string of length n_i . Contradiction! • If $M_i^{B_i}(1^{n_i}) = 0$, then B contains x, a string of length n_i .

We claim that L_{R} , where $B = \bigcup_{i} B_{i}$, can not be decided by any polytime oracle TM with

 M_i 's output on 1^{n_i} with access to be B_i and B is same as M_i cannot query of strings in $B \setminus B_i$ because string in $B \setminus B_i$ are of length larger than $p_i(n_i)$. Hence, contradiction stays!

- access to B.
- Suppose \exists a polytime TM M_i with access to B that can decide L_B . What will be the output of $M_i(1^{n_i})$ when M_i has access to B_i ? **Observation:** M_i on 1^{n_i} with access to B_i runs the same as M_i on 1^{n_i} with access to B_{i-1} as M_i cannot query on x by construction. Now,
- If $M_i^{B_i}(1^{n_i}) = 1$, then B contains so string of length n_i . Contradiction! • If $M_i^{B_i}(1^{n_i}) = 0$, then B contains x, a string of length n_i .

We claim that L_{R} , where $B = \bigcup_{i} B_{i}$, can not be decided by any polytime oracle TM with

 M_i 's output on 1^{n_i} with access to be B_i and B is same as M_i cannot query of strings in $B \setminus B_i$ because string in $B \setminus B_i$ are of length larger than $p_i(n_i)$. Hence, contradiction stays!

